
Digital Object Identifier (DOI) 10.1140/epjc/s2005-02205-2
Eur. Phys. J. C 41, 327–341 (2005) THE EUROPEAN

PHYSICAL JOURNAL C

The statistical parton distributions: status and prospects�

C. Bourrely1, J. Soffer1,a, F. Buccella2
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Abstract. New experimental results on polarized structure functions, cross sections for e±p neutral and
charge current reactions and ν (ν̄) charge current on isoscalar targets are compared with predictions using
the statistical parton distributions, which were previously determined. New data on cross sections for
Drell–Yan processes, single-jet data in pp̄ collisions and inclusive π0 production data in pp collisions are
also compared with predictions from this theoretical approach. The good agreement which we find with all
these tests against experiment strengthens our opinion on the relevance of the role of quantum statistics
for parton distributions. We will also discuss the prospects of this physical framework.

PACS. 12.38.-t, 12.40.Ee, 13.10.+q, 13.60.Hb, 13.88.+e

1 Introduction

Deep-inelastic scattering (DIS) of leptons and nucleons is,
so far, our main source of information to study the internal
nucleon structure, in terms of parton distributions. Three
years ago we proposed [1] to construct, in a unique way,
the unpolarized and the polarized parton distributions,
using a simple procedure, inspired by a quantum statis-
tical picture of the nucleon, in terms of Fermi–Dirac and
Bose–Einstein functions. An important feature of this new
approach lies in the fact that the chiral properties of per-
turbative quantum chromodynamics (QCD) lead to strong
relations between the quark and antiquark distributions.
As a consequence the determination of the best known
unpolarized light quark (u, d) distributions and their cor-
responding polarized ones (∆u, ∆d) allows one to predict
the light antiquarks distributions (ū, d̄, ∆ū, ∆d̄). Therefore
our approach has a strong predictive power, in particu-
lar, as regards the flavor-asymmetric light sea, i.e. d̄ > ū,
which can be understood in terms of the Pauli exclusion
principle, based on the fact that the proton contains two u
quarks and only one d quark [2]. It is also natural to antic-
ipate that the signs of ∆ū and ∆d̄ are the same as ∆u and
∆d, respectively. One more relevant point to recall is that
all these parton distributions were determined in terms of
only eight free parameters, which is indeed remarkable.

More recently we compared [3] our predictions with
some new unpolarized and polarized DIS measurements
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obtained at DESY, SLAC and Jefferson Laboratory and
they turned out to be rather satisfactory. Therefore, in
order to strengthen the relevance of this physical pic-
ture, we carry on the comparison with data from a much
broader set of processes, including new DIS results and
also hadronic cross sections.

This paper is organized as follows. In the next sec-
tion, we review the main points of our approach for the
construction of the statistical parton distributions and
we recall their explicit expressions. In Sect. 3, we discuss
in more detail the predictive power of our approach in
connection with some simple mathematical properties of
the Fermi–Dirac expressions and the numerical values we
found for the free parameters. This allows us to clarify the
x behavior of the quark distributions, where it is known
from the data, but also to foresee some specific behaviors,
in so far unexplored regions, for example in the high x
domain. In Sect. 4, we consider e±p neutral and charged
current reactions, whereas Sect. 5 deals with the ν(ν̄)p
charged current reactions. Section 6 concerns Drell–Yan
processes, while Sect. 7 deals with inclusive single-jet pro-
duction in pp̄ collisions and inclusive π0 production in pp
collisions. We give our final remarks and conclusions in
the last section.

2 The quantum statistical parton distributions

The light quarks q = u, d of helicity h = ±, at the in-
put energy scale Q2

0 = 4 GeV2, are given by the sum of
two terms [1], a quasi-Fermi–Dirac function and a helicity
independent diffractive contribution, common to all light
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quarks,

xqh(x, Q2
0) =

AXh
0qx

b

exp[(x − Xh
0q)/x̄] + 1

+
Ãxb̃

exp(x/x̄) + 1
. (1)

Here Xh
0q is a constant, which plays the role of the thermo-

dynamical potential of the quark qh and x̄ is the universal
temperature, which is the same for all partons. We recall
that, from the chiral structure of QCD, we have two im-
portant properties, allowing one to relate quark and anti-
quark distributions and to restrict the gluon distribution
[4–6].
(1) The potential of a quark qh of helicity h is opposite to
the potential of the corresponding antiquark q̄−h of helic-
ity −h:

Xh
0q = −X−h

0q̄ . (2)

(2) The potential of the gluon G is zero:

X0G = 0. (3)

Therefore similarly to (1), we have for the light antiquarks

xq̄h(x, Q2
0) =

Ā(X−h
0q )−1x2b

exp[(x + X−h
0q )/x̄] + 1

+
Ãxb̃

exp(x/x̄) + 1
. (4)

Here we take 2b for the power of x and not b as for quarks,
an assumption which was discussed and partly justified in
[1].

Concerning the unpolarized gluon distribution, we use
a quasi-Bose–Einstein function, with zero potential,

xG(x, Q2
0) =

AGxbG

exp(x/x̄) − 1
. (5)

This choice is consistent with the idea that hadrons, in the
DIS regime, are black body cavities for the color fields. It is
also reasonable to assume that for very small x, xG(x, Q2

0)
has the same behavior as the diffractive contribution of the
quark and antiquark distributions in (1) and (4), so we
will take bG = 1+ b̃. We also need to specify the polarized
gluon distribution and we take

x∆G(x, Q2
0) = 0 , (6)

assuming a zero polarized gluon distribution at the input
energy scale Q2

0.
For the strange quarks and antiquarks, s and s̄, given

our poor knowledge on their unpolarized and polarized
distributions, we take1

xs(x, Q2
0) = xs̄(x, Q2

0) =
1
4
[xū(x, Q2

0) + xd̄(x, Q2
0)] , (7)

and

x∆s(x, Q2
0) = x∆s̄(x, Q2

0)

1 A strangeness asymmetry, s(x) �= s̄(x), can also be ob-
tained in the statistical approach [7].

=
1
3
[x∆d̄(x, Q2

0) − x∆ū(x, Q2
0)]. (8)

This particular choice gives rise to a large negative
∆s(x, Q2

0). Both unpolarized and polarized distributions
for the heavy quarks c, b, t, are set to zero at Q2

0 = 4 GeV2.
With the above assumptions, we note that the heavy

quarks do not introduce any free parameters, and like-
wise the gluons, since the normalization constant AG in
(5) is determined from the momentum sum rule. Among
the parameters introduced so far in (1) and (4), A and
Ā are fixed by the two conditions u − ū = 2, d − d̄ = 1.
Clearly these valence quark conditions are independent
of b̃ and Ã, since the diffractive contribution cancels out.
Therefore the light quarks require only eight free parame-
ters, the four potentials X+

0u, X−
0u, X+

0d, X−
0d, one universal

temperature x̄, b, b̃ and Ã.
From well established features of the u and d quark

distributions extracted from DIS data, we anticipate some
simple relations between the potentials.
(1) u(x) dominates over d(x); therefore one expects X+

0u +
X−

0u > X+
0d + X−

0d;
(2) ∆u(x) > 0; therefore X+

0u > X−
0u;

(3) ∆d(x) < 0; therefore X−
0d > X+

0d.
So X+

0u should be the largest thermodynamical poten-
tial and X+

0d the smallest one. In fact, as we will see below,
we have the following ordering:

X+
0u > X−

0d ∼ X−
0u > X+

0d. (9)

This ordering leads immediately to some important con-
sequences for quarks and antiquarks.

First, the fact that X−
0d ∼ X−

0u, indicated in (9), leads
to

u−(x, Q2
0) � d−(x, Q2

0) , (10)

which implies, from our procedure to construct antiquark
from quark distributions,

ū+(x, Q2
0) � d̄+(x, Q2

0). (11)

These two important approximate relations were already
obtained in [1], by observing in the data the similarity
in shape of the isovector structure functions 2xg

(p−n)
1 (x)

and F
(p−n)
2 (x), at the initial energy scale, as illustrated

in Fig. 12. For 2xg
(p−n)
1 (x) the black circles are obtained

by combining SLAC [11] and JLab [12] data. The white
circles, which extend down to the very low x region, in-
clude the recent deuteron data from COMPASS [13] com-
bined with the proton data from SMC [10], at the mea-
sured Q2 values of these two experiments3. The agreement
with the curve of the statistical model is improved in this
latter case. The + helicity components disappear in the
difference 2xg

(p−n)
1 (x) − F

(p−n)
2 (x). Since this difference

is mainly non-zero for 0.01 < x < 0.3, it is due to the
contributions of ū− and d̄− [1].

2 Notice that it differs from Fig. 1 in [1], where we put incor-
rect scales, both on the vertical and the horizontal axes.

3 We have not included some corrections due to a difference
of the beam energies of COMPASS and SMC.
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Fig. 1. The isovector structure functions 2xg
(p−n)
1 (x) (solid

line from our statistical parton distributions) and F
(p−n)
2 (x)

(dashed line from our statistical distributions). Data are from
NMC [9], SMC [10], SLAC [11], JLab [12] and COMPASS [13]

Second, the ordering in (9) implies the following prop-
erties for antiquarks.
(i) d̄(x) > ū(x), the flavor symmetry breaking which
also follows from the Pauli exclusion principle, as recalled
above. This was already confirmed by the violation of the
Gottfried sum rule [8,9].
(ii) ∆ū(x) > 0 and ∆d̄(x) < 0, which have not been es-
tablished yet, given the lack of precision of the polarized
semi-inclusive DIS data, as we will see below. One expects
an accurate determination of these distributions from the
measurement of helicity asymmetries for weak boson pro-
duction in polarized pp collisions at RHIC-BNL [14], which
will allow for this flavor separation.

By performing a next-to-leading order QCD evolution
of these parton distributions, we were able to obtain in
[1] a good description of a large set of very precise data
on the following unpolarized and polarized DIS structure
functions: F p,d,n

2 (x, Q2), xF νN
3 (x, Q2) and gp,d,n

1 (x, Q2), in
a broad range of x and Q2, in correspondance with the
eight free parameters

X+
0u = 0.46128, X−

0u = 0.29766,

X−
0d = 0.30174, X+

0d = 0.22775 , (12)

x̄ = 0.09907, b = 0.40962, b̃ = −0.25347,

Ã = 0.08318 , (13)

and three additional parameters, which are fixed by nor-
malization conditions

A = 1.74938, Ā = 1.90801, AG = 14.27535 , (14)

as explained above. Note that the numerical values of the
four potentials are in agreement with the ordering in (9),
as expected, and all the free parameters in (12) and (13)
have been determined rather precisely, with an error of
the order of one percent.

3 The predicting power
of the statistical parton distributions

We now try to relate the x dependence of the quark (an-
tiquark) distributions to their specific expressions given
in (1) and (4) and to study the role of the different free
parameters involved, according to their numerical values
obtained in [1]. First, it is useful to note that, given the
small value of Ã (see (13)), the diffractive contribution is
less than 10−2 or so, for x ≥ 0.1, but it dominates in the
very low x region, when x << x̄, since b̃ < 0. Therefore
the strong change of slope of xu(x) and xd(x) at high x
(at the input scale Q2

0 and above), is related to the values
of the corresponding potentials and is larger for u than
for d, because of the ordering in (9). This is indeed what
we observe in Fig. 2, at some rather high Q2 values. This
feature is not spoilt by the Q2 evolution, which is also well
described by the statistical quark distributions as shown
in Fig. 3, where we compare with H1 data. Another inter-
esting point concerns the behavior of the ratio d(x)/u(x),
which depends on the mathematical properties of the ratio
of two Fermi–Dirac factors, outside the region dominated
by the diffractive contribution. So, for x > 0.1, this ratio
is expected to decrease faster for X+

0d − x̄ < x < X+
0u + x̄

and then above, for x > 0.6, it flattens out. This change
of slope is clearly visible in Fig. 4, with a very little Q2

dependence. Note that our prediction for the large x be-
havior differs from most of the current literature, namely
d(x)/u(x) → 0 for x → 1, but we find d(x)/u(x) → 0.16
near the value 1/5, a prediction originally formulated in
[16]. This is a very challenging question, since the very
high x region remains poorly known, as shown in Figs. 2
and 3. The typical behavior of the Fermi–Dirac functions,
falling exponentially above the thermodynamical poten-
tial, which shows up in Fig. 1, complies well with the fast
change in the slope of gp

1(x) at high x, as shown in Fig. 6.
Analogous considerations can be made for the corre-

sponding helicity distributions, whose best determinations
are shown in Fig. 5. By using a similar argument as above,
the ratio ∆u(x)/u(x) is predicted to have a rather fast in-
crease in the x range (X−

0u − x̄, X+
0u + x̄) and a smoother

behavior above it, while ∆d(x)/d(x), which is negative,
has a fast decrease in the x range (X+

0d − x̄, X−
0d + x̄) and

a smooth one above. This is exactly the trend displayed
in Fig. 5, and our predictions are in perfect agreement
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Fig. 2. Statistical quark distributions xu(x, Q2), xd(x, Q2) as a function of x for Q2 = 3000, 8000 GeV2. Data from H1 [15]

Fig. 3. Statistical quark distributions c · xu(x, Q2), c · xd(x, Q2) as a function of Q2 for fixed x bins. Data from H1 [15]

with the accurate high x data4. We note the behavior
near x = 1, another typical property of the statistical ap-
proach, also at variance with predictions of the current
literature. The fact that ∆u(x) is more concentrated in
the higher x region than ∆d(x) accounts for the change of
sign of gn

1 (x), which becomes positive for x > 0.5, as first
observed at Jefferson Lab [12].

For the light antiquark distributions (see (4)), it is
clear that in the very low x region (x < 10−3) the ratio
d̄(x)/ū(x) is ∼ 1, since the diffractive contribution dom-

4 It is worth mentioning that the Jefferson Lab points for
the d quark are those of [18], which have been moved down
compared to those of [12].

inates5 and it is an increasing function of x because the
non-diffractive term is larger for d̄(x) than for ū(x). This
natural expectation, d̄(x) ≥ ū(x) from the statistical ap-
proach, was already mentioned above and has been also
confirmed by the E866/NuSea Drell–Yan dilepton experi-
ment [20], up to x = 0.15. For larger x, although the errors
are large, the data seem to drop off in disagreement with
our predictions (see Fig. 16 in [1]). This important point
deserves further attention and we will come back to it in
Sect. 6, when we will discuss Drell–Yan dilepton cross sec-
tions. This is another challenging point, which needs to
be clarified, for example with future measurements by the
approved FNAL E906 experiment [21], to higher x values.

5 Obviously, this is also the case for the ratio d(x)/u(x).
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Fig. 4. The quark ratio d/u as a function of x for Q2 = 4 GeV2

(solid line) and Q2 = 100 GeV2 (dashed-dotted line)

Fig. 5. The ratios (∆u + ∆ū)/(u + ū) and (∆d + ∆d̄)/(d + d̄)
as a function of x. Data from Hermes for Q2 = 2.5 GeV2 [17]
and a JLab experiment [18]. The curves are predictions from
the statistical approach

We now turn to the antiquark helicity distributions.
Since we predict ∆ū(x) > 0 and ∆d̄(x) < 0, the contribu-
tion of the antiquarks to the Bjorken sum rule (BSR) [22]
is in our case 0.022, at Q2 = 5 GeV2, which is not neg-
ligible. The statistical model gives for the BSR the value
0.176, in excellent agreement with the QCD prediction
0.182 ± 0.005 and with the world data 0.176 ± 0.003 ±
0.07 [11]. It is also interesting to remark that (11) implies

∆ū(x) − ∆d̄(x) � d̄(x) − ū(x) > 0 , (15)

Fig. 6. gp
1(x, Q2) as a function of x at fixed Q2 = 3 GeV2 from

the statistical approach. Experimental data from SLAC E143
[19]

Fig. 7. Quark and antiquark polarized parton distributions as
a function of x for Q2 = 2.5 GeV2. Data from Hermes [23]. The
curves are predictions from the statistical approach

so the flavor asymmetry of the light antiquark distribu-
tions is almost the same for the corresponding helicity
distributions. Similarly, (10) implies

∆u(x) − ∆d(x) � u(x) − d(x) > 0. (16)
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By combining (15) and (16), we find a very simple approx-
imate result for the BSR, namely ∼ 1/6, a value compat-
ible with the numbers quoted above. We also compare in
Fig. 7 our predictions with an attempt from Hermes to
isolate the different quark and antiquark helicity distri-
butions. The poor quality of the data does not allow one
to conclude on the signs of ∆ū(x) and ∆d̄(x), which will
have to wait for a higher precision experiment.

Finally we are coming back to the polarized gluon dis-
tribution ∆G(x, Q2), which was assumed to be zero at the
input scale Q2

0 = 4 GeV2 (see (6)). It is interesting to note
that after evolution, it becomes negative for Q2 < Q2

0 and
positive for Q2 > Q2

0. The results are displayed in Fig. 8
and are waiting for an improved experimental determina-
tion of this important distribution.

4 Inclusive neutral
and charged current e±p cross sections

The neutral current DIS processes have been measured at
HERA in a kinematic region where both the γ and the
Z exchanges must be considered. The cross sections for
neutral current can be written, at lowest order, as [24]

d2σ±
NC

dxdQ2 =
2πα2

xQ4 (17)

×
[
Y+F̃2(x, Q2) ∓ Y−xF̃3(x, Q2) − y2F̃L(x, Q2)

]
,

where

F̃2(x, Q2) = F em
2 − veχz(Q2)G2(x, Q2)

+(a2
e + v2

e)χ2
z(Q

2)H2(x, Q2), (18)

xF̃3(x, Q2) = −aeχz(Q2)xG3(x, Q2)
+2aeveχ

2
z(Q

2)xH3(x, Q2). (19)

The structure function F̃L(x, Q2) is sizable only at high y,
and the other structure functions, introduced above, have
the following expressions in terms of the parton distribu-
tions:

[F em
2 , G2, H2] (x, Q2) =∑
f

[
Q2

f , 2Qfvf , a2
f + v2

f

] (
xqf (x, Q2) + xq̄f (x, Q2)

)
,

[xG3, xH3] (x, Q2) =∑
f

[2Qfaf , 2afvf ]
(
xqf (x, Q2) − xq̄f (x, Q2)

)
. (20)

Here the kinematic variables are y = Q2/xs, Y± =
1±(1−y)2,

√
s =

√
EeEp, and Ee and Ep are the electron

(positron) and proton beam energies respectively. More-
over, vi and ai are the vector and axial-vector weak cou-
pling constants for the lepton e and the quark f , respec-
tively, and Qf is the charge. The function χz(Q2) is given
by

χz(Q2) =
1

4 sin2 θW cos2 θW

Q2

Q2 + M2
Z

, (21)

Fig. 8. The ratio ∆G(x)/G(x) as a function of x, for Q2 =
2, 5 and 10 GeV2. The curves are predictions from the statisti-
cal approach

where θW is the weak mixing angle and MZ is the Z-boson
mass. The reduced cross sections are defined as

σ̃±
NC(x, Q2) =

Q4x

Y+2πα2

d2σ±
NC

dxdQ2 . (22)

Our predictions are compared with H1 and ZEUS data in
Figs. 9 and 10, as a function of x, in a broad range of Q2

values, and the agreement is excellent.
The charged current DIS processes have been also mea-

sured accurately at HERA in an extented kinematic re-
gion. It has a serious impact on the determination of the
unpolarized parton distributions by allowing for a flavor
separation because they involve only the W± exchange.
The cross sections are expressed, at lowest order, in terms
of three structure functions as follows [24]:

d2σcc
Born

dxdQ2 =
G2

F

4π

M4
W

(Q2 + M2
W )2

(23)

× [
Y+F cc

2 (x, Q2) − y2F cc
L (x, Q2) + Y−xF cc

3 (x, Q2)
]
,

and the reduced cross sections are defined as

σ̃cc(x, Q2) =
[
G2

F

4π

M4
W

(Q2 + M2
W )2

]−1 d2σcc

dxdQ2 . (24)

At leading order for e−p → νeX with a longitudinally
polarized beam

F cc
2 (x, Q2)

= x[u(x, Q2) + c(x, Q2) + d̄(x, Q2) + s̄(x, Q2)],
xF cc

3 (x, Q2) (25)
= x[u(x, Q2) + c(x, Q2) − d̄(x, Q2) − s̄(x, Q2)],
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Fig. 9. The reduced neutral current cross section σ̃, as a function of x, for different fixed values of Q2. The reaction e−p is at√
s = 320 GeV, e+p at

√
s = 319 GeV. Data from H1 [15,25]. The curves are predictions from the statistical approach

Fig. 10. Same as Fig. 9. Data from ZEUS [26]
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Fig. 11. The reduced charged current cross section σ̃, in e±p reactions as a function of x, for different fixed values of Q2. Data
from H1 [15,25]

Fig. 12. The reduced charged current cross section σ̃, in e±p reactions as a function of Q2, for different fixed values of x. Data
from H1 [15,25]
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Fig. 13. The reduced charged current cross section, σ̃, in e±p reactions as a function of x, for different fixed values of Q2. Data
from ZEUS [26,27]

Fig. 14. The reduced charged current cross section σ̃, in e±p reactions as a function of Q2, for different fixed values of x. Data
from ZEUS [26,27]
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and for e+p → ν̄eX

F cc
2 (x, Q2)

= x[d(x, Q2) + s(x, Q2) + ū(x, Q2) + c̄(x, Q2)],
xF cc

3 (x, Q2) (26)
= x[d(x, Q2) + s(x, Q2) − ū(x, Q2) − c̄(x, Q2)].

At NLO in QCD F cc
L is non-zero, but it gives a negligible

contribution, except at y values close to 1. Our predictions
are compared with H1 and ZEUS data in Figs. 11, 12, 13
and 14, as a function of x in a broad range of Q2 values and
vice versa. The agreement is very good, but unfortunately,
since the highest x value is only 0.42, it does not allow one
to clarify the situation regarding the large x behavior, as
already noticed above.

5 Charged current neutrino cross sections

The differential inclusive neutrino and antineutrino cross
sections have the following standard expressions:

d2σν,(ν̄)

dxdy
=

G2
FMpEν

π
(
1 + Q2

M2
W

)2

×
[
xy2F

ν(ν̄)
1 (x, Q2) +

(
1 − y − Mpxy

2Eν

)
F

ν(ν̄)
2 (x, Q2)

±
(

y − y2

2

)
xF

ν(ν̄)
3 (x, Q2)

]
; (27)

y is the fraction of total leptonic energy transferred to the
hadronic system and Eν is the incident neutrino energy.
F2 and F3 are given by (25) for νp and (26) for ν̄p, and
F1 is related to F2 by

2xF1 =
1 + 4M2

p x2

1 + R
F2 , (28)

where R = σL/σT, the ratio of the longitudinal to trans-
verse cross sections of the W -boson production. The calcu-
lations are done with sin2 θW = 0.2277±0.0013±0.009 ob-
tained by NuTeV [28] and the comparison with the CCFR
and NuTeV data is shown in Fig. 15. As expected, for fixed
x, the y dependence is rather flat for a neutrino and has
the characteristic (1 − y)2 behavior for an antineutrino.

This can be extrapolated to evaluate the cross sec-
tion of ultrahigh energy neutrinos with nucleons. The total
cross section at a given neutrino energy reads

σCC
νN (Eν) =

∫
dxdy

d2σν,(ν̄)

dxdy
. (29)

Our prediction for this total charged current cross section,
for an isoscalar nucleon N = 1/2(p + n), versus the neu-
trino energy, is displayed in Fig. 16 and it has the expected
strong energy increase. We have not calculated the corre-
sponding neutral current cross section, which is known to
be a factor three or so smaller. This new information is
certainly valuable to the large scale neutrino telescopes,
for the detection of extraterrestrial neutrino sources.

Fig. 15. Differential cross section ν(ν̄)N for Eν = 85 GeV, as a function of y. Data are from CCFR [29] (white circles) and
NuTeV experiments [30,31] (black circles)
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Fig. 16. Charged current total cross section νN , for an
isoscalar nucleon as a function of the neutrino energy

6 Drell–Yan dilepton cross sections

A very important source of information for q̄(x) distri-
butions comes from Drell–Yan dilepton processes, whose
cross sections are proportional to a combination of prod-

ucts of q(x) and q̄(x) distributions. The cross section
σDY(pp) for pp → µ+µ−X, at the lowest order, has the
simplified form

M3 d2σDY(pp)
dMdxF

(30)

=
8πα2

9(x1 + x2)

∑
i

e2
i [qi(x1)q̄i(x2) + q̄i(x1)qi(x2)] ,

where M is the invariant mass of the produced muon
pair, x1 and x2 refer to the beam and target respectively,
xF = x1 − x2 and M2 = x1x2s, where

√
s is the center of

mass energy of the collision. Clearly at NLO one should
add the Compton processes contributions to the above qq̄
annihilation terms.

More recently the NuSea Collaboration has released
the data on the Drell–Yan cross sections σDY(pp) and
σDY(pd) for proton–proton and proton–deuterium colli-
sions at 800 GeV/c [32]. They are displayed in Fig. 17 as a
function of xF for selected M bins, together with our pre-
dictions. The agreement is fairly good, mainly in the small
mass region, but in order to evaluate it more precisely, we
have plot in Fig. 18 the ratios of experiment versus theory,
using a broader set of data.

Let us now come back to the extraction of the ratio
d̄/ū from these data. For large xF, namely x1 >> x2 and
small M , we have

σDY(pd)
2σDY(pp)

� 1/2
[
1 +

d̄(x2)
ū(x2)

]
, (31)

so the measurement of this cross sections ratio is directly
related to d̄(x)/ū(x) for small x. For large x one needs

Fig. 17. Drell–Yan cross sections per nucleon at
√

s = 38.8 GeV for pp and pd as a function of xF for selected M bins. Solid
curve pp, dashed curve pd. Experimental data from FNAL E866 [32]
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Fig. 18. Drell–Yan cross sections ratios in experiment
versus theory at

√
s = 38.8 GeV for pp (open circle),

pd (full circle, square), and pCu (triangle) as a func-
tion of M for selected xF bins. Experimental data are
from [32–34]

to use small xF and large M values and we have now for
x1 � x2

σDY(pd)
2σDY(pp)

� 1/2


8 + 5 d̄(x)

ū(x) + 5 d(x)
u(x) + 2 d̄(x)

ū(x)
d(x)
u(x)

8 + 2 d̄(x)
ū(x)

d(x)
u(x)


 . (32)

Therefore the fall-off at large x of σDY(pd)/2σDY(pp) ob-
served in [20] cannot be directly related to the fall-off of
d̄(x)/ū(x), since d(x)/u(x) is also decreasing for large x, as
shown previously (see Fig. 4). The use of (31) will lead to
an underestimation of d̄(x)/ū(x). We also notice in Fig. 17
an experimental point for σDY(pp) in the bin with M in
the range (10.85, 11.85) GeV at xF � 0.05, two standard
deviations above our curve, which might very well be one
of the reasons for the dramatic falling off of d̄(x)/ū(x)
for x � 0.3, reported by NuSea. Obviously more accurate
data in this region are badly needed.

7 Single-jet and π0 inclusive productions

A precise determination of parton distributions allows us
to use them as input information to predict strong inter-
action processes, for additional tests of pertubative QCD
and also for the search of new physics. Here we shall test

our statistical parton distributions for the description of
two inclusive reactions, single-jet and π0 productions. The
cross section for the production of a single jet of rapidity
y and transverse momentum pT in a p̄p collision is given
by

E
d3σ

dp3 =
∑
ij

1
1 + δij

2
π

∫ 1

x0

dxa
xaxb

2xa − xTey
(33)

×
[
fi(xa, Q2)fj(xb, Q

2)
dσ̂ij

dt̂
(ŝ, t̂, û) + (i ↔ j)

]
,

where xT = 2pT/
√

s, x0 = xTey/(2 − xTe−y), xb =
xaxTe−y/(2xa − xTey) and

√
s is the center of mass en-

ergy of the collision. In the above sum, i, j stand for initial
gluon–gluon, quark–gluon and quark–quark scatterings,
dσ̂ij/dt̂ are the corresponding partonic cross sections, and
Q2 is the scaling variable. The NLO QCD calculations at
O(α3

s ) were done using a code described in [35], based on
a semi-analytical method within the “small-cone approx-
imation”6.

In Fig. 19 our results are compared with the data from
CDF and D0 experiments [36,37]. Our prediction agrees

6 We thank Werner Vogelsang for providing us with the nu-
merical values, resulting from the use of our parton distribu-
tions.
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Fig. 19. Cross section for single-jet production in p̄p at
√

s =
1.8 TeV as a function of ET. Data are from CDF [36] and D0
[37] experiments

Fig. 20. Comparison between the statistical model and the
D0 [38] single-jet cross sections in p̄p at

√
s = 1.8 TeV as a

function of ET and rapidity η

very well with the data up to the highest ET (or pT)
value and this is remarkable given the fact that the ex-
perimental results are falling off over more than six orders
of magnitude, leaving no room for new physics. For com-
pleteness, we also show in Fig. 20 the D0 data, for sev-
eral rapidity bins, using a presentation of the type (Data-
Theory)/Theory.

Fig. 21. Inclusive π0 production in pp reaction at
√

s =
200 GeV as a function of pT, scale µ = pT. Data from
PHENIX [42]. Solid curve fragmentation functions from KKP
[41], dashed curve from BKP [40]

Next we consider the cross section for the inclusive
production of a π0 of rapidity y and transverse momentum
pT in a pp collision, which has the following expression

Eπd3σ/dp3
π =

∑
abc

∫
dxadxb fa/p(xa, Q2) (34)

× fb/p(xb, Q
2)

Dπ0/c(zc, Q
2)

πzc
dσ̂/dt̂(ab → cX),

where the sum is over all the contributing partonic chan-
nels ab → cX and dσ̂/dt̂ is the associated partonic cross
section. In these calculations the fa/p, fb/p are our parton
distributions and Dπ0/c is the pion fragmentation func-
tion. Our calculations are done up to the NLO corrections,
using the numerical code INCNLL of [39] and for two dif-
ferent choices of fragmentation functions namely, BKK of
[40] and KKP of [41], and we have checked that they give
similar numerical results. We have compared our predic-
tions to two different data sets at

√
s = 200 GeV from

PHENIX and STAR at RHIC-BNL. The results are shown
in Figs. 21 and 22 and the agreement is good, both in the
central rapidity region (PHENIX) and in the forward re-
gion (STAR). This energy is high enough to expect NLO
QCD calculations to be valid in a large rapidity region,
which is not the case for lower energies [44].

8 Concluding remarks

We have shown that this simple approach of the statis-
tical parton distributions provides a good description of
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Fig. 22. Inclusive π0 production in pp reaction at
√

s =
200 GeV as a function of Eπ. Data from STAR [43]. Solid
curve fragmentation functions from KKP [41], dashed curve
from BKP [40]

Fig. 23. A comparison of the PDF at NLO from the statisti-
cal model (solid) with MRST2002 (dashed) [45] and CTEQ6
(dotted) [46], for quarks u, d, s and gluon at Q2 = 20 GeV2

recent data on unpolarized and polarized DIS and on sev-
eral hadronic processes. Since it involves only eight free
parameters, we have tried to relate them to some specific

properties of the parton distributions, but we do not have
yet a full understanding of their physical interpretation. It
is important to stress that we have simultaneously the un-
polarized and the polarized parton distributions, which is
a unique situation. The main features of our distributions
agree with other sets available in the literature, both in the
unpolarized case [45,46], see Fig. 23, and in the polarized
case [47–49]. We show in Fig. 23 a comparison with MRST
and CTEQ, where one observes that the essential differ-
ences lie in the small x region. We have also identified
some physical observables and kinematic regions, where
we can make definite predictions. In particular, let us re-
call a slow decreasing behavior of d(x)/u(x) for x > 0.6,
the fact that d̄(x)/ū(x) should remain larger than one for
x > 0.3, the signs of ∆ū(x) > 0 and ∆d̄(x) < 0 and our
choice for ∆G(x). All these are real challenges and we look
forward to new precise experimental data in the future.
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